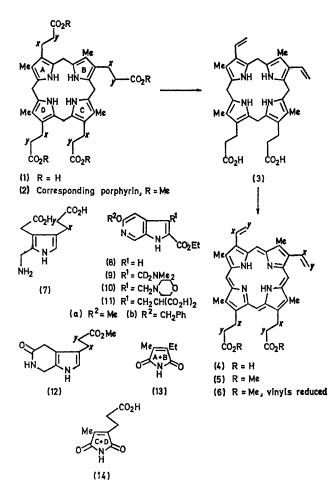
Mechanism of Biosynthesis of the Vinyl Groups of Protoporphyrin-IX

By A. R. BATTERSBY,* J. BALDAS, J. COLLINS, D. H. GRAYSON, K. J. JAMES, and E. McDONALD (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)


Summary Coproporphyrinogen-III (1) is shown to be converted biochemically into protoporphyrin-IX (4) with loss of one hydrogen atom from each propionate residue on rings A and B and the ³H-tracer results are consistent with a stereospecific process.

COPROPORPHYRINOGEN-III (1) is converted into protoporphyrinogen-IX (3) by coproporphyrinogenase, an oxidative enzyme system;¹ (3) is the precursor of protoporphyrin-IX (4). Several mechanisms have been suggested² which differ in the oxidation levels that the two methylenes of the propionate groups on rings A and B of (1) would experience over the reaction sequences. Incorporation experiments with deuteriated porphobilinogen, (7) were therefore undertaken.

 $[{}^{2}H_{3}]$ Formaldehyde reacted with the azaindole³ (8a) and dimethylamine to give the $[{}^{2}H_{2}$ -methylene] base (9a) which via³ (11a) yielded porphobilinogen lactam ester (12) labelled at x, > 98% ${}^{2}H_{2}$ species. Unlabelled (11b) was exchanged with D₂O and decarboxylated in pyridine-D₂O; the derived (12) labelled at y contained 89% ${}^{2}H_{2}$ and 11% ${}^{2}H_{1}$ species. Alkaline hydrolysis of the two samples of (12) gave two porphobilinogens (7) labelled at x and at y which were reconverted with diazomethane into (12) for mass spectrometry; no detectable loss of deuterium had occurred in either case.

Porphobilinogen (7) labelled at x was incubated with an enzyme system from Euglena gracilis⁴ and the pools of (1) and (3) so formed were converted photochemically⁵ into the corresponding porphyrins which were isolated and analysed as the esters (2) and (5). Eight deuterium atoms were present in (2) whereas (5) contained six (Table).

Similarly, (7) labelled at y yielded (2) containing ${}^{2}H_{8}$ as the major species. A slight fall in ${}^{2}H$ content occurred over the incubation and isolation processes (Table) but the

Deuterium content of labelled porphyrins

	From (7) labelled at x		From (7) labelled at y		
	Found	Calc.	Found	Calc.ª	Calc. ^b
Coproporphyrin-III tetramethyl ester (2)	$93\pm3\%{}^{2}\mathrm{H}_{8}\ 6\pm2\%{}^{2}\mathrm{H}_{7}$	$92\% {}^{2}_{8}H_{8}$ $7\% {}^{2}_{7}H_{7}$	$50{\pm}2\%{}^{2}\mathrm{H_{8}}\ 35{\pm}2\%{}^{2}\mathrm{H_{7}}\ 15{\pm}2\%{}^{2}\mathrm{H_{6}}$	63 % ² H ₈ 31 % ² H ₇ 6 % ² H ₆	50% ² H ₈ 38% ² H ₇ 11% ² H ₆ Calc. ^c
Protoporphyrin-IX dimethyl ester (5)	$90\pm3\%^2\mathrm{H_6}\ 10\pm2\%^2\mathrm{H_5}$	${}^{92\%}_{7\%}{}^{^{2}}_{^{2}}\mathrm{H_{5}}$	$44\pm2\%^2\mathrm{H_8}$ $37\pm2\%^2\mathrm{H_7}$ $19\pm2\%^2\mathrm{H_6}$	$\begin{array}{c} 63\%^2\mathrm{H_8} \\ 31\%^2\mathrm{H_7} \\ 6\%^2\mathrm{H_6} \end{array}$	45 % ² H ₈ 40 % ² H ₇ 13 % ² H ₆

^a Based upon 89% ²H₂, 11% ²H₁ in (7). ^b Based upon 84% ²H₂, 16% ²H₁ in (7). ^c Based upon 82% ²H₂, 18% ²H₁ in (7).

analyses show that the four hydrogens at sites y of (1, rings A and B) are preserved as the vinyl groups of (4) are formed. The locations of the ²H labels were confirmed by n.m.r.

These results eliminate mechanisms for $(1) \rightarrow (3)$ in *Euglena gracilis* based on intermediate ketones or acrylic acids; they are consistent with (i) hydroxylation-fragmentation⁶ or (ii) oxidative fragmentation.⁷

The base (10b) prepared from (8b), $[^{14}C]$ formaldehyde, and morpholine gave (7) as above ^{14}C -labelled at x which was mixed with (7) labelled at x with ³H synthesised as in the ²H series. Incorporation experiments with this ³H; ¹⁴Clabelled (7) were carried out in enzyme systems from algal⁴ and avian⁸ sources; the former gave free protoporphyrin-IX (4, 8.6% incorpn.), the latter mainly haem [66% incorpn. with 17% into free (4)]. The three samples of (5) so obtained were converted into mesoporphyrin-IX dimethyl ester (6). Oxidation⁹ of the derived acids gave (13) from rings A and B and haematinic acid (14) from rings C and D. The ³H;¹⁴C ratios consistently found for haematinic acid were essentially that of the administered porphobilinogen (100, 99, 97% ³H-retention, respectively) whereas the (13) contained, within experimental error, 50% of the tritium present in (7) (49, 51, 49% ³H-retention, respectively).

These results are consistent¹⁰ with stereospecific attack at the two methylene groups marked x on rings A and B of (1).

We thank the Nuffield Foundation and S.R.C. for financial support and Dr. M. Peaker for his help; J. C. and K.J.J. thank the Salters Company and J.B. thanks the Commissioners for the Exhibition of 1851 for the award of fellowships.

(Received, 15th September 1972; Com. 1590.)

¹ S. Sano and S. Granick, J. Biol. Chem., 1961, 236, 1173; A. M. del C. Batlle, A. Benson, and C. Rimington, Biochem. J., 1965, 97, 731 and refs. therein.

- ^a Leading refs. given by J. French, D. C. Nicholson, and C. Rimington, *Biochem. J.*, 1970, 120, 393.
 ^a B. Frydman, S. Reil, M. E. Despuy, and H. Rapoport, J. Amer. Chem. Soc., 1969, 91, 2338.
 ⁴ E. F. Carell and J. S. Kahn, Arch. Biochem. Biophys., 1964, 108, 1.

- ⁶ D. Mauzerall and S. Granick, J. Biol. Chem., 1958, 332, 1141.
 ⁶ S. Sano, J. Biol. Chem., 1966, 241, 5276 and refs. therein.
 ⁷ G. H. Tait, Biochem. J., 1972, 128, 1159 and refs. therein.

- ¹G. H. 1ait, *Dividem. J.*, 1972, 126, 126, 1105 and 1615. different.
 ⁸ D. Shemin, T. Abramsky, and C. S. Russell, *J. Amer. Chem. Soc.*, 1954, 76, 1204.
 ⁹ H. M. Muir and A. Neuberger, *Biochem. J.*, 1949, 45, 163.
 ¹⁰ See D. Arigoni and E. L. Eliel, *Topics Stereochem.*, 1969, 4, 127; A. R. Battersby, *Accounts Chem. Res.*, 1972, 5, 148.